Can the Disproportion of Oxidation State III Beavored in RuII−OH\textsubscript{2}/RuIV−O Systems?

Ester Masllorens, Montserrat Rodriguez, Isabel Romero, Anna Roglans, Jordi Benet-Buchholz, Macarena Poyatos, and Antoni Llobet

Departament de Química, Universitat de Girona, Campus de Montilivi, E-17071 Girona, Spain, Departament de Química and Servei de RMN, Universitat Autònoma de Barcelona, Bellaterra E-08193, Spain, Institut Català d’Investigació Química (ICIQ), Avinguda Països Catalans 16, E-43007 Tarragona, Spain, and Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, 12080 Castellón, Spain

Received November 14, 2005; E-mail: antoni.llobet@uab.es

The capacity of Ru−aqua polypyridyl complexes to lose protons and electrons and easily reach higher oxidation states was discovered by Meyer et al. about three decades ago and is exemplified in the following equations (L = polypyridine ligand):

\[
\text{L}_2\text{Ru}^{\text{II}}\text{−OH}_2 \rightleftharpoons \text{H}^+ + e^- + \text{L}_2\text{Ru}^{\text{III}}\text{−OH} \rightleftharpoons \text{H}^+ + e^- + \text{L}_2\text{Ru}^{\text{IV}}\text{−O}
\]

Since then, a large amount of literature has emerged related to this system, mainly because of the rich oxidative properties of the RuIV−O species. Reaction mechanisms for the oxidation of several substrates by RuIV−O have been established, and catalytic oxidations systems have been described.

The IV/III and IV/II redox potentials for this type of system at a given pH can have a strong impact into their reactivity toward substrates. For instance, it is known that, for the oxidation of olefins, a given pH can have a strong impact into their reactivity toward substrates. For instance, it is known that, for the oxidation of olefins, a given pH can have a strong impact into their reactivity toward substrates. For instance, it is known that, for the oxidation of olefins, a given pH can have a strong impact into their reactivity toward substrates. For instance, it is known that, for the oxidation of olefins, a given pH can have a strong impact into their reactivity toward substrates. For instance, it is known that, for the oxidation of olefins, a given pH can have a strong impact into their reactivity toward substrates.

In principle, the tuning of redox potentials can be controlled through ligand design. For simple electron-transfer processes, it seems reasonable that, in general, electron-donating groups should decrease redox potentials, whereas electron withdrawing should increase them. But, will the IV/III and III/II redox couples be influenced in a similar manner? Or, will the extent of the influence be different for each redox couple? And, if so, can they be influenced so that oxidation state III is driven to disproportionation? Furthermore, for this type of complex, there is a large pH range in which the electron transfer is accompanied by proton transfer; therefore, it is difficult to predict what will be the effect of an electronic perturbation on the redox potential.

A previous report by Meyer et al. shed some light on this subject by plotting the \(\Delta E_{1/2}\) (defined as the difference between the IV/III and III/II redox couples for the Ru−OH\textsubscript{2} type of complexes) vs \(\Sigma E_L\) (the Lever parameter for the nonaqua ligands attached to the Ru metal center) (Figure 1) and constitutes the basis for the hypothesis developed in the present communication.

This figure shows that the family of Ru−OH\textsubscript{2} complexes align into two different lines according to the so-called \(\sigma\) and \(\pi\) (depending on the \(\sigma\)-donating or \(\pi\)-accepting character of the ligands attached to the Ru metal center), and that the right ligand combination, to reach the \(\Delta E \leq 0\) zone, should have a \(\Sigma E_L\) value between 0.9 and 1.1. Given the \(\sigma\)-donor capacity of NHC carbene ligands, together with their neutral nature, we reasoned that the right combination of pyridyl and carbene bonding groups would drive us to the mentioned \(\Delta E \leq 0\) zone. Herein, we present the synthesis and spectral and electrochemical characterization of three Ru−OH\textsubscript{2} complexes containing the ligands shown below, together with the...
reactivity of their RuIV=O species toward the oxidation of cis-β-
methylstyrene.

The synthetic strategy followed to prepare [Ru(CNC)(bpy)-(OH2)]2+ (1) and trans-[Ru(CNC)(nbu-CN)(OH2)]2+ (trans-2) is outlined in the following equations (see the Supporting Information for a schematic description of the cis and trans isomers, as well as for experimental details and structural characterization in solution through NMR):

\[
\text{[Ru}^{1}[(\text{COD})_{2}]_{2}^{2+} \rightarrow \text{cis-2 [Ru(CNC)(Y)]^{+}} \text{ or nBuCN} \\
\text{Y = nBuCN; Y = bpy or nBuCN; trans-2}
\]

The cis-2 isomer was obtained in a quantitative manner by irradiating trans-2 under a tungsten lamp. The structures of complex 1 and trans-[Ru(Br)(CNC)(nBu-CN)]2+, were solved by X-ray diffraction analysis and are shown in Figure 2 and in the Supporting Information, respectively.

The electrochemical properties of the Ru₄–aqua complexes 1 and 2 were investigated by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and Coulombimetric techniques. Complex 1, containing a combination of three pyridine rings and two carbene components, has a ΔE1/2 of 50 mV, the lowest ever reported for this type of complex. The situation of this complex in the Meyer–Lever plot (Figure 1) clearly shows that a further increase in the ligand a type of electron density, together with a decrease in the π electron density, should generate a complex with a ΔE1/2 close to or below zero. Indeed, a two-electron wave is found for complexes cis-2 and trans-2, containing two pyridine rings. The Pourbaix diagrams for 1 and cis-2 are shown in Figure 3, and that of trans-2 is presented in the Supporting Information.

A value of ΔE1/2 = -137 mV is obtained for the cis-2 complex. This value is inferred from the comproportion reaction constant of Ru(II) and Ru(IV) that is calculated spectrophotometrically via UV–vis (see Supporting Information). The allocation of 1 and cis-2 into the Meyer–Lever plot is shown in Figure 1. This clearly shows that choosing the proper combination of carbene and pyridyl groups exerts the right electronic effect over the ruthenium metal center so that oxidation state III is unstable with respect to disproportionation.

![Figure 3. E1/2 vs pH or Pourbaix diagram of (A) 1 and (B) cis-2. The pKₐ values are shown by the vertical lines.](image)

Table 1. Epoxidation of cis-β-Methylstyrene*

<table>
<thead>
<tr>
<th>entry</th>
<th>[Ru(trpy)(bpy)(OH2)]2+</th>
<th>ΔE1/2 (mV)</th>
<th>yield (%)cis</th>
<th>epoxide①</th>
<th>trans-epoxide①</th>
<th>ratio cis/trans epoxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>130</td>
<td>28.0</td>
<td>10.2</td>
<td>6.6</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>450</td>
<td>19.3</td>
<td>8.5</td>
<td>3.1</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>trans-2</td>
<td><0</td>
<td>33.7</td>
<td>20.2</td>
<td>traces</td>
<td>only cis</td>
</tr>
<tr>
<td>4</td>
<td>cis-2</td>
<td>≤-137</td>
<td>22.0</td>
<td>13.2</td>
<td>–</td>
<td>only cis</td>
</tr>
</tbody>
</table>

* All the reactions were performed with 0.6 mM of [Ru], 60 mM of cis-β-methylstyrene, and 120 mM of PhI(OAc)₂ in 2.5 mL of dichloromethane at room temperature for 24 h.

\[\Delta E_{1/2} \text{ calculated with regard to the initial concentration of cis-β-methylstyrene.} \]

\[\text{Determined by gas chromatography (GC) using biphenyl as the internal standard.}\]

as a consequence of this, the related RuIV=O species strongly favors a two-electron process over the potential one-electron process pathway. Table 1 contains the results of catalytic experiments performed with [Ru(trpy)(bpy)(H2O)]2+, 1, trans-2, and cis-2 under exactly the same conditions.

As can be seen in the table there is an inverse correlation between the ratio of cis/trans epoxide isomerization in the catalytic oxidation of cis-β-methylstyrene and ΔE1/2. Furthermore, only traces of the tran epoxide are formed when using cis-2 and trans-2 complexes as catalysts, demonstrating that the process is highly stereoselective. Further work is in progress to detect reaction intermediates and extract additional mechanistic information. Additionally, we are designing homologous ligands with chiral centers in order to be able to perform enantioselective catalytic oxidations.

Acknowledgment. This research has been financed by MCYT of Spain through projects BQV 2002-04002-C02 and 2003-02884. A.L. is grateful to CIRIT Generalitat de Catalunya (Spain) for the Distinction Award and aid no. SGR2001-UG-291. A.L. also thanks Johnson and Matthey for a RuCl₃·xH₂O loan. E.M. is grateful for the award of a doctoral grant from MEC.

Supporting Information Available: CIF files together with additional structural, spectroscopic, and electrochemical data. This material is available free of charge via the Internet at http://pubs.acs.org. The crystallographic data for this paper (CCDC 290663, 296064) can also be obtained free of charge from Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, U.K.; fax +44 1223 336033 or e-mail deposit@ccdc.cam.ac.uk.

References

JA057733+